
www.manaraa.com

A shortened version of this paper appeared in IEEE Computer, October 1994. 1High-Pressure Steam Engines and Computer Software�Nancy G. LevesonComputer Science & Eng. Dept., FR-35University of WashingtonSeattle, WA 98195
Even though a scienti�c explanation may ap-pear to be a model of rational order, weshould not infer from that order that the gen-esis of the explanation was itself orderly. Sci-ence is only orderly after the fact; in process,and especially at the advancing edge of some�eld, it is chaotic and �ercely controversial.| William Ruckelshaus [33, p.108]The introduction of computers into the control ofpotentially dangerous devices has led to a growingawareness of the possible contribution of software toserious accidents. The number of computer-relatedaccidents so far has been small due to the restraintthat has been shown in introducing them into safety-critical control loops. However, as the economic andtechnological bene�ts of using computers become morewidely accepted, their use is increasing dramatically.We need to ensure that computers are introduced intosafety-critical systems in the most responsible waypossible and at a speed that does not expose peopleto undue risk.Risk induced by technological innovation existedlong before computers; this is not the �rst time thathumans have come up with an extremely useful newtechnology that is potentially dangerous. We can learnfrom the past before we repeat the same mistakes. Inparticular, parallels exist between the early develop-ment of high-pressure steam engines and software en-gineering that we can apply to the use of computersin complex systems.The Problems of Exploding BoilersGreat inventions are never, and great discov-eries are seldom, the work of any one mind.�This paper was presented as a keynote talk at the Inter-national Conference on Software Engineering, Melbourne, Aus-tralia, May 1992 and is included in the proceedings.

Every great invention is really either an ag-gregation of minor inventions, or the �nalstep of a progression. It is not a creationbut a growth | as truly so as that of thetrees in the forest. Hence, the same inven-tion is frequently brought out in several coun-tries, and by several individuals, simultane-ously. Frequently an important invention ismade before the world is ready to receive it,and the unhappy inventor is taught, by hisfailure, that it is as unfortunate to be in ad-vance of his age as to be behind it. Inventionsonly become successful when they are not onlyneeded, but when mankind is so advanced inintelligence as to appreciate and to expressthe necessity for them, and to at once makeuse of them. Robert H. ThurstonA History of the Growth of the SteamEngine (1883)Hero of Alexandria, who lived around 60 AD, con-ducted some of the �rst known investigations into theuse of steam for power. But it was not until the 16thand 17th centuries that the problem of pumping waterout of mines changed the search for steam power froma diversity to a necessity. Many inventors attemptedto harness this source of power, but Savery is usuallycredited as the �rst to produce and sell a workablesteam apparatus. Then Newcomen designed a prac-tical cylinder and piston engine around 1700 which isthe forerunner of all subsequent steam engines.In 1786, James Watt was working as an instrumentmaker at Glasgow University and was asked to repaira model of a Newcomen engine that was being used ina Natural Philosophy class. By one of those serendipi-tous coincidences of history, Watt had become friendlywith several professors, including Dr. Joseph Black, achemistry professor who discussed with Watt his re-cent discovery of the phenomenon of latent heat. Wattwas unique among the early steam engine inventors in

www.manaraa.com

having had direct and indirect contact with scientistswho studied heat [17].Watt decided he could improve on the Newcomenengine and patented several important ideas, includ-ing the separate condenser and the design of an engineproducing rotating motion, at the same time as the in-dustrial revolution was generating a demand for poweron an unprecedented scale. With a successful manu-facturer named Matthew Boulton, Watt came up witha design for a steam engine that was the leading edgeof technological change in the last two decades of theeighteenth century. The application of steam powertransformed industry in terms of output and produc-tivity and produced even more revolutionary changesin transportation when it was applied to locomotivesand ships.The Boulton and Watt machines used low-pressuresteam (from 5 to 15 psi), which limited both their ef-�ciency and economy. Higher pressure (i.e., above at-mospheric pressure) would have permitted more pow-erful and economical engines, but Watt opposed it onthe grounds that it increased the danger of explosionand thus constituted an unacceptable risk.Although Watt and Boulton resisted making high-pressure steam engines, their patent expired in 1800,and such engines soon made their appearance. OliverEvans in the U.S. and Richard Trevithick in Eng-land almost simultaneously designed engines that dis-pensed with condensers and used steam directly topush a piston. These so-called high-pressure enginesrequired greater than atmospheric pressure to work.The �rst wide-spread application of the high-pressure engine, on steamboats, resulted in frequentand disastrous explosions: passengers and crew wereblown up, scalded to death, hit by ying fragmentsof iron, and blown o� steamers to drown. Accidentswere also common in industrial uses of high-pressuresteam. The early steam engines used inferior materi-als; they had low standards of workmanship; the me-chanics lacked proper training and skills; and therewere serious problems with quality control [10].In the U.S, there were calls for professionalizationand standardization of the training of steam engineerswho typically had an informal and haphazard edu-cation. There was even a suggestion that the federalgovernment establish an academy of steam technology.All of this came to naught and engineers continued formany years to be trained \willy-nilly" [30].Watt's predictions about the danger of the new en-gine were correct. Cameron and Millard write:As the technology of steam power ad-vanced, Watt found himself in an increas-

ingly di�cult dilemma: the trend towardgreater e�ciency and power also increasedthe risk of explosion. The technology thathe had created escaped his control and be-came increasingly dangerous to life and prop-erty. Watt expected more accidents anddeaths would result from adoption of high-pressure steam. The threat to public safetynow overshadowed the public utility of steampower: : :But what could Boulton and Watt do?They were in no position to stem the eco-nomic forces that demanded more and morepower from the steam engine. If they refusedto develop the technology, many other engi-neers | most of them untrained and poorlyskilled | were willing to take the risk ofhigh-pressure steam. What they could dowas to alert the public to dangers in the newtechnology and remind their fellow engineersof their special obligations to ensure publicsafety. Watt initiated the debate about therisks of the new technology and used his in-uence to press for safer, and better engi-neered, alternatives [10, pp. 6{7]Watt's campaign against high-pressure steam alongwith some well publicized accidents slowed its adop-tion in England. Trevithick complained that his com-petitors had greatly exaggerated the risk and the ac-cidents, writing:I believe that Mr. B. & Mr. Watt isabt to do mee every engurey in their powerfor the have don their outemost to repoartthe exploseion both in the newspapers andprivate letters very di�ernt to what it reallyis [17].A German supporter of high-pressure steam wrote in1842 that the intense discussion of its defects andsafety risks had clouded the issue of its advantagesand had \disgusted the industrial community" [10].The public pressure did force the makers of high-pressure steam engines to incorporate safety features[12]. The risk from this type of machine came from theboiler and not from the engine itself: It was the boilerthat was exploding and causing most of the casualities.The technological development of boilers lagged be-hind the rapid improvement of the engines. Engineersquickly amassed scienti�c information about thermo-dynamics, the action of steam in the cylinder, thestrength of materials in the engine, and many other2

www.manaraa.com

aspects of steam engine operation. But there was lit-tle scienti�c understanding about the buildup of steampressure in the boiler, the e�ect of corrosion and decay,and the causes of boiler explosions [17]. High-pressuresteam had made the current boiler design obsolete byproducing excessive strain on the boilers and expos-ing weaknesses in the materials and construction ofthe boilers.To counter this, engineers introduced two types ofsafety features: safety valves to reduce steam pres-sure when it reached a dangerous level and fusiblelead plugs that were supposed to melt when the tem-perature in the boiler grew too hot because of theoverheating of the steam. But these much publicizedtechnological �xes did not solve the problems, and thenumber of explosions continued to increase. The �xeswere unsuccessful because engineers did not fully un-derstand what went on in steam boilers: It was notuntil well after the mid-century that the dynamics ofsteam generation was understood.A second reason for the number of accidents wasthat engineers had badly miscalculated the workingenvironment of steam engines and the quality of theoperators and maintainers. Most designs for enginesand safety features were based on the assumption thatowners and operators would behave rationally, consci-entiously, and capably. But operators and maintainerswere poorly trained, and economic incentives existedto override the safety devices in order to get more workdone. Owners and operators had little understandingof the workings of the engine and the limits of its op-eration.While operators certainly did contribute to theproblems, they were not solely responsible for them.Nevertheless, owners or operators received most of theblame for explosions; criticism was rarely leveled atthe engineer who had designed the engine. As notedabove, many of the engineers who took the risk ofdeveloping high-pressure steam technology were un-trained and poorly skilled. Limited knowledge of thescienti�c foundations of their craft existed at thattime. The personal standards of the inventor-engineerwere the chief element in the safe operation of the en-gine, and Watt believed that engineers had a personalresponsibility to ensure a safe and e�cient steam en-gine and that they bore culpability in case of accidents.Early opponents of high-pressure steam proposedregulations to limit its dangers by limiting the usesof the new technology. This idea met with little suc-cess. In the �rst half of the nineteenth century, gov-ernments were not disposed to interfere with privateenterprise. The steam engine embodied the idea of

success and was credited with \national progress al-most unchecked, and of prosperity and happiness in-creased beyond all precedent" [10]. Many engineersargued that the social and economic gains of steampower were an acceptable trade-o� for the risk in-volved. Typical was the response of U.S. SenatorThomas Hart Benton who, upon helping to defeat leg-islation to reduce boiler explosions on steamboats, re-marked that masters and owners of steamboats were,with few exceptions, men of the highest integrity andthat he had never met with any accident on a steam-boat despite the fact that he traveled widely; uponboarding he was always careful to inquire whether themachinery was in good order [9].But the dramatic increase in accidents that followedwide-scale introduction of steam engines was hard toignore. An explosion of a steam-powered boat in Eng-land, followed by a series of industrial explosions, ledto the creation of a Select Committee in 1817 to re-port on the dangers of high-pressure steam. The Com-mittee began its report by acknowledging the greatcontributions of steam power to national prosperityand the drawbacks to interfering with private busi-ness. However, it noted that when public safety wasendangered by \ignorance, avarice, or inattention : : : itbecomes the duty of Parliament to interpose" [9]. TheCommittee recommended frequent boiler inspections,but their recommendations were not put into e�ect.Around the same time, the city council of Philadel-phia was the �rst legislative body in the U.S. to takenotice of the accidents and attempt to investigate. Areport from the city council was referred to the statelegislature where it died.Accidents continued at an alarming rate during the1830s and 1840s, which prompted more governmentattempts to limit risk. In the U.S., the Commissionerof Patents estimated that in the period of 1816{1848,a total of 233 steamboat explosions had occurred inwhich 2,562 persons had been killed and 2,097 in-jured, with property losses in excess of $3,000,000.The Franklin Institute, which had been founded inPhiladelphia in 1824 for the study and promotion ofthe \mechanical arts and applied science," began asix-year study of boiler explosions. The �rst researchgrant of a technological nature by the U.S. govern-ment went to the Institute to defray the cost of theapparatus required for experiments in this study. Inthis instance, an invention and the accidents associ-ated with it were pushing science. The result was aseries of reports that exposed errors and myths in pop-ular theories on the nature of steam and the causes ofexplosions, guidelines for the design and construction3

www.manaraa.com

of boilers to increase safety, and a recommendationthat Congress enact regulatory legislation includingrequirements that engineers meet certain standards ofexperience, knowledge, and character [9].As result of steamboat explosions, the prevailingbias against government regulation began to change.Laws were passed in both England and the UnitedStates requiring compensation for families of passen-gers killed in accidents due to neglect or default. Therewere, however, no inspection criteria included nor werequali�cations set for engineers. The prevailing beliefwas that putting quali�cations for engineers into ef-fect was too di�cult and that enlightened self-interestof entrepreneurs would guarantee the public safety.These laws failed to reduce the number of explosions.Hundreds of newspaper editorials on the subjectexpressed the increased frustration of the public. Thesocial costs of high-pressure steam engines versus theeconomic bene�ts were even treated in literature.Dickens wrote about them in Household Words [11],and, in the novel Gryll Grange by Thomas Love Pea-cock, a character remarks that \High pressure steamwould not scatter death and destruction around themif the dishonesty of avarice did not tempt their em-ployment, where the more costly low pressure enginewould ensure absolute safety."Public pressure plus a series of marine disasterskilling hundreds more people �nally forced the U.S.Congress to pass a law in 1852 that corrected the prob-lems with steamboat boilers and reduced the numberof steamboat accidents. This law was the �rst suc-cessful example of regulatory legislation in the UnitedStates, and it created the �rst U.S. agency to regu-late private enterprise [9]. Unfortunately, similar leg-islation was not passed for locomotive and stationaryboilers, and accidents involving the use of boilers inother than steamboats continued.Watt and others were correct in their belief thatnew standards of precision and safety were essential inthe design, manufacture, and operation of the engines.These high standards were �nally enforced in Britainin the latter part of the nineteenth century, and boilerexplosions in Britain fell dramatically. By 1905 therewere only 14 deaths from boiler explosions in Britainas compared to 383 in the United States. Eventually,a majority of Americans also realized the necessity toenforce standards: Associations for the prevention ofsteam boiler explosions were formed; insurance com-panies were organized to insure steam equipment thatwas manufactured and operated with the utmost re-gard for safety; and, through the e�orts of the Amer-ican Society of Mechanical Engineers, uniform boiler

codes were adopted [9].Exploding Software?We are now in the computer age and again are facedwith a new technology for which there are great eco-nomic incentives to push the state of the art and to usethis technology to control dangerous systems. Com-puters, like steam engines and electrical systems, giveus the ability to accomplish things we could not ac-complish before. And again, it appears that the riskscould increase over time as computers take over moreand more functions. One di�erence is the potentialconsequences of accidents: We are building systemsand using computers to control them that have thepotential for large-scale destruction of life and the en-vironment. Even a few accidents may be disastrous inthese systems.It is therefore crucial that we use computers respon-sibly. Examining more closely the parallels from thepast may provide some clues as to how to do this.� Boiler technology lagged behind improvement insteam engines themselves.Although computer hardware technology has ad-vanced at an astounding rate, the development ofsoftware engineering has been slower. It has alsobeen slower than required for the complex systems wewant to build, like a space station or automatically-controlled nuclear power plants. There appear to betwo ways to cope with this current shortfall.The �rst is to fall back on a time-tested engineeringprinciple: keep things simple and increase the com-plexity of what we are attempting to do slowly as welearn from our experiences. For example, Ontario Hy-dro recently became the �rst utility in Canada to ob-tain a license for a completely computerized nuclearpower plant shutdown system. The software containsabout 6000 lines of code and uses only the simplest,most straightforward coding techniques. Hardwarefail-safe devices like watchdog timers and software self-checks are included to deal with some types of soft-ware errors. The software includes well-establishedsafety design principles that were standard in the pre-vious hardware shutdown systems. And because thesoftware design is so simple, they were able to applyformal and informal veri�cation and safety techniques[2, 4] in addition to using standard testing techniquesto develop con�dence in the software.In contrast, the �rst computerized shutdown sys-tem in England, under licensing evaluation for the4

www.manaraa.com

Sizewell B reactor, has 100,000 lines of code, involves300-400 microprocessors, and contains both controland shutdown functions [35]. This system not onlygoes beyond our ability to apply sophisticated soft-ware veri�cation techniques, but it also violates thebasic nuclear reactor safety design principle that re-quires complete independence of control and safety de-vices [1]. Safety design criteria of this type have beendeveloped and proven over time | computer scientistsneed to be aware of them and engineers should thinkcarefully before abandoning them: The design crite-ria represent knowledge accumulated by successes andfailures in engineering over hundreds of years.A second way to cope with the gap between soft-ware and hardware technology development also re-quires us to dampen somewhat our enthusiasm andcon�dence in computers. Although mistrust of com-puters has led to the use of hardware backup and fail-safe devices in the most critical systems, this mistrustis fading. Increasingly, existing hardware safety mech-anisms and interlocks are being eliminated and com-puters substituted for monitoring and control. Engi-neers are deciding that the hardware safety interlocksand backups are not worth the expense, or in the caseof aircraft, the extra weight, or they put more faith insoftware than in hardware reliability. This again vio-lates a standard safety design principle that requireseliminating single-point failure modes, that is, the sys-tem should be built so that a single event (like a soft-ware error) cannot cause an accident. The Therac-25 is an apt example. The designers of this radiationtherapy machine eliminated the usual hardware safetyinterlocks that are standard for linear accelerators ofthis type when they introduced computer control, be-lieving that the hardware devices were no longer neces-sary. Instead, the interlocks and safety checks were im-plemented in software. After seven accidents between1985 and 1987 involving massive radiation overdosesand four deaths, the company �nally relented and puthardware safety devices on the machine [24].We can be cautious in our use of computers tocontrol dangerous systems without unduly hamper-ing technological progress. James Watt campaignedagainst the use of high-pressure steam engines, yet hewas only successful in delaying somewhat their use inBritain. In the 1880s, at the same time as the in-dustrial world was struggling to cope with the rapidintroduction of steam technology, similar issues arosewith the introduction of high-voltage electricity. An-other inventor, Thomas Edison, criticized the use ofhigh voltage because of its complexity, poor reliabil-ity, and threat to public safety and began a campaign

to alert the public of the dangers and of his belief thatthe size and impact of the risk would increase overtime. Edison argued for a safe low-voltage electricalsystem that could quickly achieve public acceptance.Like Watt, he was only partially successful.Another inventor-engineer, Elihu Thomson, alsoopposed high-voltage current as too dangerous. Butinstead of condemning the system and campaigningfor its elimination, Thomson attempted to �nd a tech-nological �x. He believed that several safety deviceswould greatly reduce the risk of accidents and lob-bied for the need to engineer safe high-voltage sys-tems. Thomson's argument was that a program ofsafety engineering would have commercial advantagesin a highly competitive market for those companieswith a technological lead in the construction of thesafety devices.Watt and Edison attempted to limit risk by arguingagainst the introduction of technology with tremen-dous potential bene�ts. In contrast, Elihu Thomsonargued that we can limit risk by using simple, safe de-signs rather than limiting the uses of our technology ordrastically inhibiting technological development. TheThomson approach is the more practical and morelikely to be successfully applied to the use of com-puters in safety-critical systems.� There was little scienti�c understanding of thecauses of boiler explosions.Like boilers, the scienti�c foundations of our �eldare still being developed. Changing from an art to ascience requires accumulating and classifying knowl-edge. Although this is happening, more e�ort is be-ing expended on new inventions and building tools forunproven techniques without rigorous scienti�c foun-dations. We need to carefully validate and assess ourhypotheses using scienti�c principles.Trial and error is a time-tested way of accumulatingengineering knowledge. Engineers analyze the causesof failures and accidents and then take corrective mea-sures to prevent or minimize their reoccurrence. Thecorrections eventually �nd their way into speci�ca-tions, standards, codes, regulatory requirements, andwhat is considered to be good engineering practice.But this is a very slow way to accumulate knowledge.Early in the trial and error process, engineers startto look for analytical approaches. The brisk pace oftechnological development today is possible becauseof the foundational knowledge that has been devel-oped about such things as mechanics, materials, andstructures so that engineers do not have to evaluate5

www.manaraa.com

their designs only by building something and seeingwhether it falls down over time.There are two stages in the early years of a newtechnology: (1) exploration of the space of possibleapproaches and solutions to problems (i.e., invention)and (2) evaluation of what has been learned by thistrial and error process to formulate hypotheses thatcan be scienti�cally and empirically tested in orderto build the scienti�c foundations of the technology.Most of our emphasis so far has been in the �rst stageor invention; it is time now to give more attention tothe second.Invention is a worthy and necessary pursuit, butthe most useful inventions are based upon or improvedby scienti�c knowledge. Invention produces products,techniques, and tools. Science produces the knowl-edge and ability to evaluate and improve our prod-ucts, techniques, and tools. Inventors use science tobuild better inventions, to know that they are better,and to compare them to what we already have. Thegradual development of scienti�c knowledge led to theimportant patents by Watt that produced a practicalsteam engine. Further enhancement of basic knowl-edge about steam engines and boilers allowed the pro-duction of more e�ective and safer engines. Althoughrudimentary knowledge allowed the production anduse of low-pressure steam engines, safe high-pressureengines required a deeper scienti�c foundation.Software engineering inventions have providedleverage in building our current software systems. Ido not want to denigrate what we have accomplished:We are building extremely complex systems, many ofwhich work remarkably well a large amount of thetime. But we may be straining at the limits of what wecan do e�ectively without better inventions based onknown scienti�c and engineering principles. And ourearly rapid progress may be slowing as we reach thelimits of what we can accomplish on the basis of bruteforce. As an example, the late 1950s and early 1960'ssaw the development of very clever ways of buildingparsers for programming languages. But with the de-velopment of formal theories of grammars, parser gen-erators became possible that eliminated the necessityof crafting a parser for each new compiler.Similar needs exist in software engineering. Ourgreatest need now, in terms of future progress ratherthan short-term coping with current software engi-neering projects, is not for new languages or tools toimplement our inventions but more in-depth under-standing of whether our inventions are e�ective andwhy or why not. For example, we have a greater needto develop and validate the underlying principles and

criteria for designing speci�cation languages than tocreate more languages. We have a greater need to de-velop and validate basic design principles and to un-derstand conicts and tradeo�s between them than formore tools to specify designs. And we have a greaterneed to study the e�ects of di�erent types of softwaredevelopment processes in real organizations and underdi�erent conditions than to create more languages forspecifying processes.Reseachers in some sub�elds of software engineeringhave been more conscientious in attempting to buildtheir theoretical foundations. Testing is one such area,although they too have a long way to go. For exam-ple, testing researchers have de�ned theoretical waysof comparing testing strategies both in terms of costand e�ectiveness (for example, [38]), formal criteriafor evaluating testing strategies (for example, [16]),and axioms or properties that any adequacy criterion(rule to determine when testing can stop) should sat-isfy (for example, [37]). In general, theoretical founda-tions can provide (1) criteria for evaluation, (2) meansof comparison, (3) theoretical limits and capabilities,(4) means of prediction, and (5) underlying rules, prin-ciples, and structure.How will we build this foundation? It will requireboth building mathematical models and theories andperforming carefully-designed experiments. In an ab-stract system, the elements are created by de�nitionsand the relationships between them are created by as-sumptions (e.g., axioms and postulates). Many ques-tions can be answered about abstract systems by usingmathematics. In concrete systems (where some of thecomponents are physical objects), establishment of theexistence and properties of elements requires researchwith an empirical foundation since our knowledge ofthe physical laws involved are almost always incom-plete.The great power of the computer is that it is ageneral-purpose machine that can be changed into aspecial-purpose machine by the addition of a set ofinstructions (data) to accomplish that purpose. Soft-ware is an abstract design of a special-purpose ma-chine that becomes a concrete design as soon as itis executed on a computer. Software then can andshould be evaluated both as an abstract design anda concrete design. Furthermore, software is both amathematical object and a human product. We can-not build e�ective tools or design techniques to helphumans construct software without understanding thehuman problem-solving behavior involved in buildingsoftware.The empirical aspects of our �eld imply the neces-6

www.manaraa.com

sity for experimentation. As an example, formal meth-ods have been proposed as a partial solution for theproblems of ensuring safety, but there has been lit-tle validation of the hypotheses underlying these tech-niques. Does the use of formal methods result in feweror di�erent errors being made? Are the resulting pro-grams more reliable? Are they safer? Are some tech-niques more e�ective than others? What type of train-ing is necessary to use the techniques e�ectively? Isit more or less costly to use formal methods? Becausethe techniques must be employed by humans, it is notpossible to answer these questions using only math-ematical analysis; experiments involving humans willbe necessary.Intuition plays an important role in formulating hy-potheses. But sometimes our intuition is misleading;we cannot stop with generating hypotheses (as we toooften do now) no matter how much con�dence our in-tuition allows us to place in them. Currently, we areapplying techniques and even mandating them with-out validating that these work or that the underlyinghypotheses and assumptions are valid (e.g., [3]).When a physicist makes an erroneous claim, suchas in cold fusion, the idea may stay around for a whileon the fringes of the �eld. However, the insistence onrepeatability and careful experimentation allows suchclaims to be dismissed by the scienti�c majority withina relatively short period of time. We need to insist onthe same level of evaluation and proof with regardto claims about software engineering techniques andtools. Unfortunately, this is rarely done and our beliefin silver bullets persist. Even after Brooks' and Par-nas' carefully reasoned and widely-acclaimed papers[8, 27], we are still seeing claims that the silver bullethas been found.I am not advocating that everyone stop the researchthey are doing in software engineering and start test-ing hypotheses and building foundations. Inventionis a very important part of progress in engineering.Tools and techniques are needed for the serious prob-lems we face today. But inventions that are based onestablished principles will be more e�ective in solvingthe complex problems we are attempting to solve. Weneed to recognize the unproven assumptions and hy-potheses underlying our current software engineeringtechniques and tools and evaluate them in the contextof what has actually been demonstrated about thesehypotheses instead of what we would like to believe.Like the exploding boilers, our ability to build safesoftware-controlled systems and to build e�ective soft-ware engineering tools to accomplish this will be en-hanced by greater understanding of the scienti�c foun-

dations of our craft.� The safety features designed for the boilers did notwork as well as predicted because they were notbased on scienti�c understanding of the causes ofaccidents.Not only do we not understand the underlyingcauses of software errors, but few researchers are ex-amining the cognitive processes that underlie theseerrors. This has led to the development and use ofmethods to deal with errors that are based on erro-neous underlying assumptions.As just one example, claims of ultra-high softwarereliability in safety-critical systems and certi�cation ofthese systems by government agencies have been basedon the use of N-version programming (NVP). NVP in-volves separate teams writing multiple versions of thesoftware. These versions are executed, and the ma-jority answer (if there is one) is used. The techniqueis adopted directly from the hardware fault tolerancetechnique of N-modular redundancy where multiplecopies of a component are connected to a voting cir-cuit that selects the majority value.The hardware technique was developed to copewith random failures, not with design errors. Despitethis fact, NVP translates the approach into softwareterms and is used in most of the computerized com-mercial aircraft systems today as a way of suppos-edly achieving ultra-high software reliability. How-ever, the few empirical studies performed on it didnot test the underlying assumption of independence offailures and did not carefully analyze the data to deter-mine whether ultra-high reliability was actually beingachieved [23]. A series of experiments [6, 14, 22, 34]and a mathematical analysis [13] have cast doubt onthese assumptions.The latest approach by the proponents of this tech-nique is to relabel it \software diversity" and to com-pare it to the established method of hardware designdiversity although again the software technique doesnot satisfy the basic underlying assumptions. Diver-sity in hardware does not just happen; you have todesign it in. Components with di�erent failure modes,such as electronic and hydraulic components, are usedin order to avoid common-mode failures. This crucialunderlying assumption, that the components have dif-ferent failure modes, is not satis�ed by multiple soft-ware versions.Not only do we need to validate that the assump-tions underlying a software engineering technique sat-isfy the claims for it, but wishful labeling should be7

www.manaraa.com

avoided. Labeling a technique, e.g., \software diver-sity" or \expert system," with the property we hope toachieve by it (and need to prove about it) is misleadingand unscienti�c. In the case of expert systems, a la-bel like \production-rule system" (which, in fact, theywere called before someone came up with the moresales-oriented label) would have been more scienti�c.Then those suggesting the use of this technique wouldmore likely be required to prove that the system actslike an expert instead of this being taken as an ax-iom. In fact, psychological studies and theory havesuggested that human experts do not make decisionsin this way (e.g., [31, 28]): Much more sophisticatedtypes of problem-solving are involved.Related to proof by labeling is proof by de�nition,for example, de�ning fault tolerance as redundancy(another common practice) or de�ning safety as theuse of protection (e.g., monitoring and shutdown) sys-tems. In proof by de�nition, instead of embedding theproperty in the de�nition of a technique to achievethat property, the technique is embedded in the de�-nition of the property. Two problems result. The �rstis the tendency to assume that the property has beenachieved because the approach embedded in the de�-nition is used, e.g., fault tolerance has been achievedbecause redundancy is used. The second is that thesearch for possible ways to achieve the property islimited to the embedded approach, e.g., if safety isde�ned as the use of protection systems to recoverfrom hazardous states, other more reliable or e�ectivetechniques that eliminate hazardous states or mini-mize getting into them are not considered.Unless we can develop a foundation of knowledgeabout human error in software development, it isdoubtful that we will be able to design highly e�ec-tive software development techniques to eliminate itor compensate for it. Moreover, we need to avoidequating humans with machines and ignoring the cog-nitive and human aspects of our �eld. Finally, weneed to avoid proof by labelling or limiting solutionsby our de�nitions and other such unscienti�c practicesif we are to design, assess, and select the most e�ectivesafety and reliability enhancement techniques.� The introduction of safety devices for steam en-gines was inhibited not only by the lack of underly-ing scienti�c knowledge about boilers, but also bya narrow view of attempting to design a techno-logical solution without looking at the social andorganizational factors involved and the environ-ment in which the device is used.

A major airline, known for having the best aircraftmaintenance program in the world, a few years agointroduced an expert system to aid their maintenancesta�. The quality of maintenance fell. The sta� be-gan to depend on the computerized decision makingand stopped taking responsibility and making theirown decisions. When the software was changed toprovide only information and only when requested,quality again rose. A similar example of this phe-nomenon has been found in aircraft: Hazardous sit-uations have resulted when the introduction of com-puters increased pilot complacency and reliance andreduced situational awareness. The use of computersto enhance safety may actually achieve the oppositee�ect if the environment in which the computer willbe used and the human factors are not carefully con-sidered.Some people have suggested that the solution is toremove humans from critical loops completely. How-ever, in doing this, they are placing unjusti�ed relianceon the ability of programmers to foresee all eventuali-ties and correctly predetermine the best solution underall circumstances. And even highly automated sys-tems need humans for supervision, maintenance, andoperation.Another aspect of technological narrowness is theemphasis on technical solutions over organizationaland managerial considerations. Nearly every majoraccident of the past 20 years (for example, Three MileIsland, Chernobyl, Challenger, Bhopal, and Flixbor-ough) involved serious organizational and managerialde�ciencies. Management that does not place a highpriority on safety can defeat the best e�orts by thetechnical sta�. In each of the recent accidents noted,the organizations had sophisticated and potentially ef-fective safety programs and safety devices. In eachcase, the potential e�ectiveness of the safety deviceswas canceled out by non-technical factors. The con-cern, responsibility, and accountability for safety in anorganization may be as important or more importantthan technology.� The operators of steam engines received most ofthe blame for accidents, not the designers or thetechnology.It is unfortunately very common to blame the op-erators for accidents when they have been put into asituation where human error is inevitable. This is ascommon today as it was a hundred years ago. Andit is becoming a more serious problem as softwareengineers start to design human/machine interfaces8

www.manaraa.com

without adequate knowledge about human factors andwithout the bene�t of decades of gradual improvementof designs through experience.As an example, although it is almost universallybelieved that pilot errors account for the majority ofaircraft accidents, an Air Force study of 681 in-ightemergencies showed 659 crew recoveries for equipmentand maintenance de�ciencies with only 10 pilot errors.Other aerospace studies show that about 80% of air-craft pilot-related accidents are due to poor trainingor neglect of human engineering in controls and in-struments, not to stupidity or panic [18].Humans are e�ective in emergencies because oftheir ability to analyze a situation and come up withnovel solutions. Humans work well when they have adeep understanding, a sound model of the world, thatthey can use to predict the results of their actions.Operators sometimes �nd it necessary to violate therules in order to accomplish their tasks or to preventor mitigate the consequences of accidents. The dis-ruption that often occurs during a job action whenemployees \work to rule" demonstrates how necessaryexibility is. In order to make decisions during emer-gencies, operators must have an understanding of thesystem they are controlling and must be given properinformation in a usable format.Three Mile Island is a classic example of the mis-attributing of an accident to operators and the use ofhindsight to label operators' actions as erroneous. Op-erators are usually blamed for this accident althoughthe accident sequence was initiated and compoundedby equipment failure that was completely independentof operator action. Furthermore, the major errors ofthe operators could only have been seen after the fact;at the time, there was not enough information aboutwhat was going on in the plant to make better de-cisions. In fact, the events that occurred have beenlabelled as inevitable given the existing instrumenta-tion [7]: They were a direct function of the electro-mechanical system design. For example, the computerwas hours behind in printing out alarms and informa-tion although decisions had to be made in minutes,the instrumentation was unreadable under emergencyconditions, and the wrong information was provided.Prior to the Three Mile Island accident, nuclear engi-neers took little interest in operator interface design.The Kemeny Commission's report on the accident con-cluded that the operator error was precipitated andcompounded by basic aws in system design [20].The Vincennes (Iranian Airbus) incident is wellknown, but many other less-publicized accidents haveoccurred due to poor design of the human/computer

interface. At one chemical plant in Britain, a com-puter printed a long list of alarms when a power fail-ure occurred. The design team had assumed that insuch a situation the operator would immediately trip(shutdown) the plant. Instead, the operator watchedthe computer print the list of alarms and wonderedwhat to do. The operator should not bear the respon-sibility alone here; if any person is overloaded with toomuch information, they are most likely to do nothingwhile they try to understand the situation [21].A basic understanding of human psychology andbehavior is a prerequisite for user interface design thatis commonly missing from software engineering educa-tion. A design, for example, that involves displayingdata or instructions on a screen for an operator tocheck and to verify by pressing the enter button will,over time and after few errors are found, result in theoperator getting into the habit of pressing the enterkey multiple times in rapid succession. Most of ushave fallen into this trap ourselves.The solution is obvious. Software engineers musttake human factors more seriously and human en-gineering experts must be involved in the design ofsafety-critical software interfaces.� The early steam engines had low standards ofworkmanship, and engineers lacked proper train-ing and skills.Building safety-critical software requires specialskills and knowledge on the part of both develop-ers and management. Like any quickly developingtechnology, demand for quali�ed personnel has out-stripped the supply, and appreciation of the skills andtraining necessary is often lacking.Too often education in software engineering is be-hind the state-of-the-art, and it narrowly focuses oncomputer skills without providing training in basic en-gineering skills. All too typical is the man with a de-gree in nuclear engineering who told me that he buildssoftware to control aircraft although he does not re-ally understand basic aeronautical principles (and, Isuspect, software engineering principles). People lack-ing in-depth knowledge of software engineering or theapplication area, and sometimes both, can be foundbuilding safety-critical software.Many government standards in the U.S. requirecritical engineering projects to have at least one li-censed Professional Engineer on their sta�. SystemSafety Engineers have additional licensing require-ments in many states. The standards do not usually9

www.manaraa.com

require that every engineer on a project have a Profes-sional Engineering or Safety Engineering license; how-ever, a license is required for those holding certain po-sitions on the project such as lead engineer or systemsafety manager, along with requirements that they ac-cept responsibility for assuring that the highest engi-neering standards and ethics are practiced. Nothingsimilar exists for any of the Software Engineers whoare working on the same projects.In his campaign against high-voltage electricity,Edison warned against the problems of poor work-manship and ignorance on the part of the majorityof electrical contractors just as Watt had emphasizedthe personal moral responsibility of the engineer toensure a safe and e�cient steam engine and the cul-pability of the engineer in case of accidents [10]. If wein software engineering do not ourselves insist on es-tablishing minimum levels of competency and safety,then the government will step in and do it for us. Thepublic expects and has the right to expect that dan-gerous systems are built using the safest technologyavailable.Watt, Edison, and other inventors of the 18th cen-tury campaigned to raise professional skills becausethey realized the potential harm of their inventions inthe wrong hands. They anticipated the need for higherstandards of safety and precision in the engineeringof new technological systems, and they initiated theprocess of raising professional standards [10]. Edisonand Watt believed that \engineers had a responsibil-ity to produce competent work, including the utmostin safety" [10]. Eventually professional societies devel-oped that took over the role of establishing safety andcompetency standards.Such standards and licensing requirements must becarefully composed. The extensive regulation of high-voltage electricity distribution in Great Britain hasbeen blamed for its slow adoption and the lag in elec-trical development compared to the U.S. [26]. For ex-ample, regulations that set a minimum standard ofinsulation were stricter than was necessary and wereblamed for the high cost of installation. But manyBritish engineers argued that although the extensiveregulation increased the cost, it also lessened the dan-ger of �re and injury. As a group, British electrical en-gineers in the 1890's believed that lack of regulation inthe U.S. had helped the development of the electricalindustry at the cost of more accidents, which were \socommon as to be part and parcel of the system" [26].At the same time, British engineers were condemn-ing Americans for their unsafe use and maintenanceof steam boilers.

Just as overly strict regulations unnecessarily in-hibited electrical technology development in Britain inthe last century, so poorly-written standards can in-hibit the development of computer technology. Worse,standards can inadvertently shift responsibility awayfrom the manufacturers and developers to governmentagencies that have much less e�ective and direct con-trol over the safety of the �nal product. And poorlywritten standards may have no e�ect or even increaserisk.Some current attempts to formulate software stan-dards for critical systems equate safety and reliability(for example, the use of \integrity levels" which areusually just a pseudonym for reliability levels) or theyde�ne safety as the reliability of the safety protectiondevices (which is the prevailing de�nition in the nu-clear power industry). While this approach to risk iscommon in reliability engineering, safety engineeringhas learned the hard way that highly reliable systemscan be very dangerous while it is possible to designsystems to be very safe even though they are unre-liable. Limiting our standards to reliability concernsand enhancement only will not be e�ective against thelarge number of accidents that do not result from fail-ures nor will they be e�ective against those accidentsthat do result from failures in systems or subsystems(like software) where ultra-high reliability cannot beachieved or guaranteed.Safety engineers instead de�ne safety in terms ofhazards and attack the problem by looking for ways toeliminate or control hazards. Two approaches are pos-sible: eliminating or minimizing the occurrence of haz-ards and controlling hazards once they occur in orderto prevent injury or damage. As an example, if �re isthe hazard of concern, the �rst approach would substi-tute nonammable materials or eliminate or minimizethe potential for a spark; in e�ect, the design becomesinherently safe and ensures that risk from �re is ex-tremely low or non-existent. The second or protectionsystem approach would instead rely on smoke detec-tors and sprinkler systems to detect and put out a �reafter it starts; the risk then is dependent on the relia-bility of the protection device. Upstream approaches(hazard elimination or minimization) may result in asafer system but they may also require foregoing somebene�ts (e.g., reducing outputs or increasing devel-opment costs) or they may not be possible. Down-stream approaches may require fewer design tradeo�s,but they may result in higher risk.System safety analysis involves identifying and eval-uating these tradeo�s in the early design stages of thesystem. Limiting our de�nitions and standards to the10

www.manaraa.com

use of protection devices e�ectively rules out the useof potentially more powerful approaches before theyare even considered. Furthermore, relying on protec-tion devices again limits our solutions to �nding waysto build ultra-high reliability protection devices andultra-high reliability software.In our enthusiasm, we also do not want to impedeprogress by writing unachievable standards or inadver-tently increase risk by implementing the wrong stan-dards. As discussed earlier, we have not scienti�callyestablished the bene�ts and e�ectiveness of most ofour software engineering techniques. Depending ona particular software engineering methodology to as-sure safety by assuming it will produce error-free orultra-high reliability software is dangerous. And asthe technology progresses, standards that require theuse of speci�c approaches often lag behind. Manufac-turers may feel no ethical or legal duty to go beyondwhat is required in the standard.Moreover, manufacturers or those who will person-ally bene�t �nancially from particular techniques be-ing included or not included in the standards some-times play a dominant role in the drafting process.The result may be watered down requirements or therecommendation of techniques with more commercialthan technical value.The alternative is to construct exible standardsspecifying general criteria for acceptability of amethodology instead of a speci�c methodology and en-suring that those building safety-critical software havethe competency and personal responsibility to use thebest approaches available at the time and for the par-ticular project characteristics.As Edison argued with respect to electricity, in-creased government regulation of our technology maynot be to anyone's bene�t; but it is inevitable unlesswe, as the technology's developers and users, take thesteps necessary to ensure safety in the devices that areconstructed and technical competence in those thatconstruct them.AcknowledgementsSeveral people provided helpful comments on ear-lier drafts of this paper including Daniel Berry, JohnGannon, Susan Gerhart, David Notkin, David Par-nas, Jon Reese, John Rushby, and Elaine Weyuker. Itshould not be assumed, however, that they necessarilyagree with the points made in the paper.

References[1] Aitken, A. Fault Analysis, in A. E. Green (ed.),High Risk Safety Technology, New York: JohnWiley & Sons, 1982[2] Archino�, G.H., Hohendorf, R.J., Wassyng, A.,Quigley, B., and Borsch., M.R. Veri�cation ofthe Shutdown System Software at the Darling-ton Nuclear Generating Station, Proc. Int. Conf.on Control and Instrumentation in Nuclear In-stallations, Glawgow, U.K., May 1990.[3] Bollinger, T. and McGowan, C. A Critical Lookat Software Capability Evaluations, IEEE Soft-ware, July 1991, pp. 25{41.[4] Bowman, W.C., Archino�, G.H., Raina, V.M.,Tremaine, D.R., and Leveson, N.G. An Appli-cation of Fault Tree Analysis to Safety CriticalSoftware at Ontario Hydro, Conf. on Probabilis-tic Safety Assessment and Management (PSAM),Beverly Hills, April 1991.[5] Briggs, A. The Power of Steam, Chicago: TheUniversity of Chicago Press, 1982.[6] Brilliant, S.S., Knight, J.C., and Leveson, N.G.Analysis of Faults in an N-Version Software Ex-periment, IEEE Trans. on Software Engineering,Vol. SE-16, No. 2, February 1990, pp. 238{247.[7] Brookes, M.J. Human Factors in the Design andOperation of Reactor Safety Systems, in D.L.Sills, C.P. Wolf, and V. Shelanski (eds.), Accidentat Three Mile Island: The Human Dimensions,Boulder, Colorado: Westview Press, 1982.[8] Brooks, F.P. No Silver Bullet: Essence and Acci-dents of Software Engineering. IEEE Computer,April 1987, pp. 10{19.[9] Burke, J.G. Bursting Boilers and the FederalPower, Technology and Culture, Vol. VII, No. 1,Winter 1966, pp. 1{23.[10] Cameron, R. and Millard, A.J. Technology As-sessment: A Historical Approach, Dubuque,Iowa: Kendall/Hunt Publishing Company, 1985.[11] Dickens, Charles. Household Words, 1851, inStone, Harry (ed.), Uncollected Writings fromHousehold Words, 1850{1859, Bloomington: In-diana University Press, 1968.[12] Dickinson, H.W. A Short History of the SteamEngine, London: Frank Cass & Co. Ltd., 1963.11

www.manaraa.com

[13] Eckhardt, D.E., and Lee, L.D. A Theoretical Ba-sis for the Analysis of Multiversion Software Sub-ject to Coincident Errors, IEEE Trans. on Soft-ware Engineering, Vol. SE-11, No. 12, December1985, pp. 1511{1516.[14] Eckhardt, D.E., Caglayan, A.K., Knight, J.C.,Lee, L.D., McAllister, D.F., and Vouk, M.A.An Experimental Evaluation of Software Redun-dancy as a Strategy for Improving Reliability,IEEE Trans. on Software Engineering, Vol. SE-17, No. 7, July 1991, pp. 692{702.[15] Farey, J. A Treatise on the Steam Engine: Histor-ical, Practical, and Description, London: Long-man, Rees, Orme, Brown, and Green, 1827.[16] Goodenough, J. B. and Gerhart, S. Toward aTheory of Test Data Selection, IEEE Transac-tions on Software Engineering, Vol. SE-1, No. 2,June 1975.[17] Hills, R.L. Power from Steam: A History ofthe Stationary Steam Engine, Cambridge: Cam-bridge University Press, 1989.[18] Johnson, W.G. MORT: Safety Assurance Sys-tems, New York: Marcel Dekker, Inc., 1980.[19] Josephson, M. Edison, London: Eyre and Spot-tiswoode, 1961.[20] Kemeny, John G. The Need for Change: TheLegacy of Three Mile Island. Report of the Pres-ident's Commission on Three Mile Island, NewYork: Pergamon Press, 1979.[21] Kletz, T. Wise After the Event, Control and In-strumentation, Vol. 20, No. 10, October 1988, pp.57{59.[22] Knight, J.C. and Leveson, N.G. An ExperimentalEvaluation of the Assumption of Independencein Multiversion Programming, IEEE Trans. onSoftware Engineering, Vol. SE-12, No. 1, January1986, pp. 96{109.[23] Knight, J.C. and Leveson, N.G. A Reply tothe Criticisms of the Knight and Leveson Ex-periment, Software Engineering Notes, January,1990.[24] Leveson, N.G. and Turner, C.S. The Story Behindthe Therac-25 Accidents: A Computer-RelatedAccident Investigation, submitted for publica-tion.

[25] Millard, A.J. Edison and the Business of Innova-tion, Baltimore: Johns Hopkins University Press,1990.[26] Millard, A.J. A Technological Lag: Di�usion ofElectrical Technology in England 1879{1914, NewYork: Garland Publishers, 1987.[27] Parnas, D.L. Software Aspects of Strategic De-fense Systems. Communications of the ACM, Vol.28, No. 12, December 1985, pp. 1326{1335.[28] Parnas, D.L. Why Engineers Should Not UseArti�cial Intelligence. Proceedings of the CIPSEdmonton '87 Conference, Edmonton, Alberta,November 16-19, 1987, published in J. Schaef-fer and L. Stewart (eds.), Intelligence Integra-tion, Dept. of Computing Science, University ofAlberta, p. 39{42.[29] Passer, H. The Electrical Manufacturers, Cam-bridge, Mass.: Harvard University Press, 1953.[30] Pursell, C.H. Early Stationary Steam Engines inAmerica, Washington, D.C.: Smithsonian Insti-tution Press, 1969.[31] Rasmussen, J. Cognitive Control and Human Er-ror Mechanisms, in J. Rasmussen, K. Duncan,and J. Leplat (eds.), New Technology and HumanError, New York: John Wiley & Sons, 1987.[32] Robinson, E. and Musson, A.E. James Watt andthe Steam Revolution, New York: Augustus M.Kelley, Publishers, 1969.[33] Ruckelshaus, W.D. Risk, Science, and Democ-racy, in T.S. Glickman and M. Gough, Readingsin Risk. Washington, D.C.: Resources for the Fu-ture, 1990.[34] Scott, R.K., Gault, J.W., and McAllister, D.F.Fault-Tolerant Software Reliability Modeling,IEEE Transactions on Software Engineering, Vol.SE-13, No. 5, May 1987, pp. 582{592.[35] Watts, S. Computer Watch on Nuclear PlantRaises Safety Fears, London Independent, Sun-day, Oct. 13, 1991.[36] Weil, V. The Browns Ferry Case, in M. Curdand L. May (eds.) Professional Responsibility forHarmful Actions, Dubuque, Iowa: Kendall Hunt,1984.[37] Weyuker, E.J. Axiomatizing Software Test DataAdequacy, IEEE Trans. on Software Engineering,Vol. SE-12, No. 12, Dec 1986, pp. 1128{1138.12

www.manaraa.com

[38] Weyuker, E.J., Weiss, S., and Hamlet, D. Com-parison of Program Testing Strategies, Proceed-ings of the Fourth Symposium on Software Test-ing, Analysis and Veri�cation (TAV4), Victoria,B.C., Canada, Oct 1991, pp. 1{10.

13

